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EMISSION OF PHOTONS AND ELECTRON-POSITRON PAIRS IN
A MAGNETIC FIELD

N. P. Klepikov

ABSTRACT. This article is a study of the luminous electron,
electron-positron pair production, and single-photon anni-
hilation of pairs in a strong magnetic field from the stand-
point of relativistic quantum theory. Stationary wave func-
tions are derived and the probability of particle transforma-
tions in a magnetic field is examined. Asymptotic equations
are derived. The emission spectrum of the luminous electron
is examined with consideration of the electromagnetic field
as a perturbation. The probabilities of single-photon and
two-photon annihilation of electron-positron pairs are com-
pared. Transformations of a photon to an electron-positron
pair and of electrons to electron-photon pairs are discussed.

The phenomenon of the luminous electron, pair production by photons and /19*%
electrons, and the single-photon |annihilation of pairs in a magnetic field -
are examined using relativistic quantum theory. The results obtained are
valid for very strong magnetic fields, where the emission intensity of
electrons differs substantially from the intensity calculated by classical
theory.

1. Wave Functions and Matrix Elements

Quantum theory of the luminous electron has recently drawn the attention
of many investigators who have obtained, however, only partial results. The
need arises, therefore, to examine the theory of this phenomenon in greater
detail than it has been studied up to now, and also to construct the theory

of other particle transformations in a magnetic field with the help of this
mathematical tool.

This article is the development of articles [1-4] on quantum theory of
the luminous electron, where the applicability of computations of emission
intensity is not limited here to the trivial consideration of quantum
corrections to classical formulas. Also examined are phenomena related

to the creation and annihilation of electron-positron pairs in a magnetic
field.

In determining the probability of particle transformations in a magnetic
field we will, first of all, find the stationary wave functions of electrons
in the magnetic field as eigenfunctions of the following complete system of

* Numbers in the margin indicate pagination in the foreign text.



commuting operators: energy operator
H=c (v A 2
=P O\ Vo + pyme?, (1.1)

operator of the projection of momentum on the magnetic field

(1.2)
operator of the projection of momentum on the spin
- ~(h e :
and operator of the y-coordinate of the center of rotation
4k a
Vo= """ "ol 9x' (1.4)

assuming that the z axis is directed along the magnetic field and the vector
potential has the form

|
Ax=—Hy, Ay=A4A,=0, (1.5)

The eigenfunctions of this system of operators are as follows:

a A ;)
sa B Th— (¢)
seB A T, (B)
f B i ()

' (1.6)

$ = 7 exp {— icelKt - ihyx 4 ihyz __521}

a=l/—;—(l+a%’->, {=]/;;-(1—e~f<£),_ (1.7)
‘A:‘/:;_—-(T:*‘ﬂs%a—)’ B::‘/:;:_(x_:?{;), (1.8) .
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Hi () =:L//£%i}/r€$_ I, () is the standard Hermite polynomial,

—yY T R FrEYS
E"‘ylf74'jﬁ?’ k==1/k3*‘2h3 Skh is the eigenvalue of operator (1.3), s = * 1,

» 1, 2,...1is an integer, vy = eH/ch. The energy of the electron E = echK,
1,

+ O

™
hn

K=V + 1y o, (1.9)

momentum along the field P, = k3, - @ < k3 < = and the y-coordinate of the

center of rotation yy = - ky/v, - » < k; < ». From (1.9) follows
TR p,\2
l”ﬁ[(;?ﬁ) L (m ] l (1.10)

where Hy = m?c3/eh = 4.67-10130e. By transforming the coordinates and

calibration of the potential it is easy to establish the correspondence of the
functions of (1.6) to the functions found by other authors for other sets of
operators (see [3]).

.
We will now examine the matrix elements of the operator " for the
respective wave functions of (1.6). By integrating with respect to the x

and 3 coordinates we find 34,5+k5# o b,

; kg %tk » and the integral with respect to y

yields i
wr=a ABBI(, [ —1)+saBesBAI{'=1,1) +
'S B A saBI{, | — 1)+ B Badl(l —“1. 1), (1.11)

2y =i (—aABBI{l, L — 1)+ A BesBAIL —1, 1) —
— SFA B, | — 1)+ B BeAI{ —1, 1)}, (1.12)

we=o Aes3AI(l', ) —sBBBIU—1,1—1)+

sy AAT{l, ) —FBsaBI{—1, L —1), (1.13)

where the coefficients are determined by equations (1.7) and (1.8) and



I, = LSH:(wa ARy Vi )

1/p,,y+r RS
Xexp{——(y Vi+ k‘,f;‘) (yV + ) Hu,y}d.v—:

— a2V e - —%—~i<l—~t')?—-fxa—~—-"‘£§“’}xz
X U= P (= U5 =1 + 15 9),,

(1.14)

where 1 > 1',q = (x-+3)[27, 7 = arctg (x,/x,).| Integral (1.14) is found by con-

~.
[\
—

verting to the variable z=yV/{- (2 +# —in)/2)/ ¥ [the integration curve
for the straight line 2==—~UmJ2Lﬁ)+-xL transferring the curve of

integration to the true axis, using the equality

]
(2 +a) 2) T (l k)l Q‘l)hHl-—h (2) (1.15)

and making use of the orthogonality of Hermite's polynomials. By using the
relation ~
4 e,‘;; ,

Fil= 05 L= 415 2) = L5 R (=, =t — (1.16)

N -
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it is easy to find (considering the symmetry of the function of ,Fy with
respect to its parameters), that

] (Zl, l) eitizo—m = | (l, l’) etl'(zo—m) ' (1.17)
Summation of the spin variables s and s’ yields

- KK'—ee'k eck b ,
S fadf= SR I — )+ 10— 1, +
S, S'ent]
EE'YV-H—'- + (1t ' 4+ (1! ’
t g I =) =1, )+ —1, hI, -1,

(1.18)



B ! ge'k cekk , ’
3 gl =g e (=PI =1, P
&, S el .
— =€’L‘<’,“’ @, L-ni¢—1)+re—1 HIY, L=l (1.19)
- KK — e"kﬁ e Kk.! )
S 5 KK e 0, s 1, =) P —
S, slom+1
_fE’lYJ(’,“' e, i@ -1, 1=+ —1, 1—=0)1{, b, 1.20)
2 (axaz+a2ax) "‘l
, s, a’—j;l
= g (K Vzml*(l' M@ =0+, L—-1)1, )+
=1, =D =1, D=L, 01—, [— 1))+
+k,V21'7[1+(z'»--1_, L=, =)+, =010 —1, —1)+
I DI =1, DI —1, DI, D), 1.21)
1.21
2 (sa. + ?«‘ﬁy)=\
. ) o ’_Il
o= .?,R;( {/, VRU | — I, DI, =1+ 1, L— 1)1, 0+
FIE L DI =1, D= =1, DI — 1, L —1)] 4
P VA [T — 1, L= I I =) 1 1, 1= 1) — 1, [—1)+
SN DI =1, )= —1, )1, ), | (1.22)
;,i (7 ay—i-ayax)—— \
— ee’ VT— .
RS u+(1 L= DI —1, h—1( —1, hI, L—1). (1.23)

Henceforth it will be necessary also to represent the integrals of (1.14) /22
in another form. By using the relations

Al E+ 11+ 1 2= F e 1 12— 1R 2), (1.24)



i@+ 1; 1+ 1; 2) = (e —7),F (o *.'+ 1; 2) +11F (o5 13 2)

(1.25)
it is easy to obtain
eV gI({l, I—)y=—VTI{ -1, (=) + VI, 1, (1.26)
eV I =1, =YW —1, =) —VTI{, 1) (1.27)
Then, by using the equation
IR 2= e+l | (1.28)
we find
VIPIQ —1, 1=1)= - ( + L= g 1, ) — g LD, (1.29)
Combining (1.29) with (1.26) and (1.27) we have
o VigI{l, | — 1)___E;- (q+1—=)1{, 1)+ qol (', 1)]og, (1.30)
e'vmll(l’——l,l)=—-;—((l+l'—1)1(_l'» ) —qol (', 1)[oq. (1.31)

Thus, the four integrals /(I', ), I(f, {—1), I(I'—1, Yy I('—1, I=1) are
expressed through the two functions y(r, {) and al(t%‘t‘){aq,;

2. Asymptotic Formulas For Matrix Elements With Large Parameters

In order to avail ourselves of the possibility of investigating particle
transformations for large energies, we will have to find the asymptotic formulas
for the integrals of (1.14) entering into the matrix elements, which are use-
ful in those cases where the numbers ', 7 - 7' and ¢ are simultaneously

. T
large. After substituting —{—>—Icosta, I—{ + 1—>Isin*a~+1 (0<;a*..7[>

and ¢ ~ 7z in the parameters of the degenerate hypergeometric function

lfi(;_ii [~fo+-1;q)’ we will make use of the usual integral representation
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1F1(— Lcos*a; Isina + 1; I0) =

1 I'(/cosda+-1)T (Isin®a + 1) ' . )
= Ini Fu+1) iﬂxp{lﬁt-rln(l——t}—cos-aﬂnt—an]}%é, (2.1)

where the contour C passes around the point ¢ = 0 in the positive direction.
The expression after the exponent sign in the integral of (2.1) has
stationary points under the relation

ty=[t— sin®o 4V (= sin® a)2¥45 cos?a) /2%, (2.2)

The points ¢y lie on the real axis if

§A<(l —cosa)’, (> (1 4+ cos «)2, ; (2.3)

and, consequently, the function under consideration will be monotonic for

1 > =, Otherwise, the points t; are complex, and the asymptotic behavior of

the function will have an oscillating character (see [5], pp. 246). We will
not examine the latter possibility, since,

v - owing to the law of conservation of energy,

the first condition of (2.3) is always

second condition of (2.3) is satisfied in
the case of the creation and annihilation
of pairs. Let us assume that

z = (1—cosa)?sechb.. If the second

condition of (2.3) is satisfied, all cal-
culations are analogous to the case under

to replace cos a by - cos o and sech B by

sech (0 <E< w/2).

The condition B = 0 gives the boundary
of monotonicity of the function of F;. 1In

the coordinates ['>0, n=1{—0>0, ¢>0

have the form

n=q+2VIlq (2.4)
Fig. 1. Boundary of Mono-
tonicity wof the Function F,

(equation of an elliptical cone). The
(-1', n+ 1, q)

satisfied for the luminous electron, and the

consideration, and it will be necessary only

the equation of the boundary (Figure 1) will

/2



region of monotonicity is located outside the cavity of this cone.

Let us take in (2.2) the positive radical sign [for the second condition
of (2.3) it is negative], since it is only here that the integral, after
integration, approaches the contour of the steepest descent passing through

tp. We will further substitute £—»{,e'' and obtain the equation

Fi(—lcosta:lsin®a + 1;{(1 — cos«)? ’ 1 T'({cos*a+1)T (! sin?a+1 ‘
15y H H oS =

X exp {{[(1 — cos a)* sech  £y+ In (1— £o)— cos? a(ln ty+ =i)]) | ettt (2.5)
él

where

A p |
—t=(l—cosa)?sech B t,(e! — 1) +In ﬁflﬁ; — tcosta. (2.6)

We will expand -t in powers of %:
—:=pt2+vt3+ct‘+..., (2.7)
where

t=1/p(cos’c —B?), v=1/ (cos?a — 3B%— 2B9),
®=15(cos?a —782— 1983 — 6BY), B= (1— cosa)?sech B t,— cos?a. -

(2.8)
In particular, fﬁeCh?==1~—E,E<Z: 1, ’
p=VEcos™a(l —cosa), v —1/gcos?a(l —cosa),
o~ —1/,cos?a(l —cosa). (2.9)

The conversion of u to zero on the boundary of monotonicity makes it impossible

to obtain for jF, the asymptotic forumla uniformly suitable for £ - 0 using the
saddle-point method. Therefore, for 7 >> 1, we will consider not one term

in (2.7), but both first terms simultaneously [6]. Then, in addition to the /24
integral with - t from (2.7) for the contour Imt = 0, we will have the

integral with

—r=p 7

(2.10)



in the complex plane T = U + LV for the contour

V=4V @/ UF 30 (2.11)

It is easy to see that the difference of these integrals is

oD

Y _-rd
2LSe’ FmIm(t—T7)dr. (2.12)

1] !

In (2.12) the values t and T on the upper half of the contour are to be
considered. Finding the integral with respect to the T-contour by trans-
ferring the curve of integration of the asymptote, we find

AC gty J2 2w
2ni§ e dr—3,11/3“1explﬁv_”'}l('/'(ﬁ_\_ﬁ)’l (2.13)
T

where Kl/ is the Bessel function of the imaginary argument. Using (2.12)
3
as shown in [3], we may evaluate the upper bound of error in this cal-

culation and finally obtain

Fi(—1Lcos?q Isin®a 4 13 [(1 — cos a)2 sech f) =

_ I'{dcos? o 4 1) I" (/sin?a + 1)
TUxD) x

X exp {£{(1 — cosa)*sech i £, |- In (1 — £g) — coste (Inf, - =i)]) x

_ B exp (M 2l AN GD)
X {3n,f3~| S exp {5l K, {;‘7‘ <v=}+9m-r}' 18l<t.

(2.14)

Now it is easy to see that (2.14) is valid for Z' >> 1 and for any sech B. For
B - 0, we obtain from (2.14) the first two terms of the expansion of ;F; by

the saddle-point method. For B - = the left half of (2.14) trends toward
unity. By substituting in (2.14) cos o by -'cos a and B by <8, the expression
obtained, for B - %; trends toward the right half of (1.16), if in the latter
formula we replaced the function of ,F; by unity (for z >> 7 and z >> 1').

We will now find the approximate expression for the integral I (L', 1)

entering into the matrix elements, assuming that sech g =1 - g, £ << 1.
Collecting all factors and expanding both the argument of the function of



K1/3 and the product on the left of this function in powers of v¢ , we

find

I(costs, I © K, {50 = cosa) VB aosa ),
[I({cos?a, l)]| = l/ s {.;( cosa) V'8 cosa }’j (2.15)

*
if we disregard the values of the order of 7£2 in comparison with Zgl/z
In the original variables

, L Vvi—Vey—q,, { VwﬂVﬁ—ViF—ﬂ%
= Ky s T
D= v §Twr=ver e (218
Differentiating with respect to g, we find
4 :
MUJ” J_ WV—Vy)_w]K {gVﬁﬂVﬁ—VYF_qW}
l"—}?q T WVi=vry LR VT=V7)E v (217
For the second region of monotonicity

Doy e A V=TV {__ VIl —( Vigyr )’“’]"']
L 7 i S Vit VP ’ (2.18)
aw, 1 Vtz'[f,——(V1+V1)] »lfzz'[q_(V1+1f1)]'/-
R Wisvip K3 Tien e (219

3. Emission Spectrum of the Luminous Electron

We will examine the probability of transition of an electron located in a
constant and uniform magnetic field to a lower level of positive energy with
the emission of a photon by viewing the electromagnetic field of emission as
a perturbation. We will take the energy of perturbation in the usual form:

U - ‘/éf__%a at (1 eimt lxr
VLt[ L; | (3.1)

-> >
where 7ic and chk are the momentum and energy of the photon, whereupon

@ () @ (%) = B — (oar) 2, (3.2)

™~
93]

* Poorly legible on original copy -- tr.
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Employing the usual calculation according to the method of nonstationary
theory of perturbation and assuming that k; = k3 = 0, we will find the
probability of transition

4r2el

A A '““+! WK=K _")°1-—x."k;. —_ (3.3)

>

where the vector components of & are defined in (1.11)--(1.13). The laws of

conservation take into account the recoil of the electron and the conservation
of energy (ee' = 1):

k3=:—-ucoso? N (3.4)
ky = —xsin0cos 9, ' (3.5)
V i+ 2y —V i + o'y + x* cost 0 = . (3.6)
Now it is easy to find
0 (K—K —x) =
. _Vigp¥r . V2(1+p)y[ / N }
V'l+p_.sma()1/q°{x SinE 0 1_—1_-{-_;15”1 0] (3.7)
where
o Hy/p’,\¢  ®*cos?® . x¥sin? 0 \
pzil—l’r':mk;n—cﬂ): 2y 21T 2y \

By multiplying the probability of emission by the energy of the photons
chk, averaging the initial spin states, and adding the final states, we will

find the emission intensity

I n 9 .
= L 2qVIi¥p+r
Ti sinbdi\ do — Yq ¥ » 3 2 2
fin ngog § "Vigp—sinvoVq s?j“{]“xl +|ayl coS 0+

4 Iarz‘|2 81.“2 O —4sm 0 cos0[cos '9(&13} t;fta") -t sin ¢ (a, %z + o a,)] -
~— sin® U sinp cosg (a:ay + aj’&'x)}‘ / ' (3.8) /26

The expression within the braces in (3.8) is obtained when applying (3.2)
to the probability of (3.3), with consideration of the condition that k3 = 0.
This expression, as we may easily prove, does not depend on angle ¢. There-
fore, in preserving our notation, we may set ¢ = 0 in (3.8). I



We will now use equations (1.18)--(1.23) and (1.29)--(1.31), assuming that
7> 1and I’ >> 1, and we will consider that 1-—[0”1/[——}/fV]<<:1 , where

the particles have high energies. Then, assuming 0= (n/2) + ¢, ¢ < x/2,:
and using (2.16) and (2.17), disregarding the valuesp and »' in comparison

with 7 and 7' in all places where the main terms are not cancelled, and then
proceeding from the summation with respect to »n to integration, we obtain!

! /2
e E 1 2 (VIi—Vi=na)* (p + 14?)
! R he 371:’5) dn —S:/z d ? Ll ([___n)'/-

o r (2 VT—VTZR .
Xh%—ﬁﬂp+Wﬁ&h%“%ﬁﬁ%?*p+wﬂﬂ+
+RVIT—n) ¢+ (VT—=VI=np(p +19?)] X

2V I —=Vi<a

x K (5 -+ 1™} (3.9)

For the limiting angle of emission we obtain, as in classical theory, P2 = p/,
or

1
o= meE- . (3.10)
For n << 7 the angle may be even greater.

Let us now proceed to the frequency of emission and express it through
y = w/mcr, where the critical frequency 1is

¢ [ E\3 3
e R (m‘«) 2 13 ([EJmcd) (hjmeR) (3.11)

! Quantum corrections found in [7] to the spectrum partially coincide with those
which may be obtained from formula (3.9), but the most important correction
term in intensity of the order of n5/311 for & = /2 and n << (1 - 82)73/2 (in
our designations) is omitted there. Also not found in [7] is the correction

to the spectrum integrated with respect to the angles and complete intensity.
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and B is the radius of the orbit. Then we will find

1+2/2

=D EN 1 @+22
1= 5% () @ Syzdy{[““-[zm—i——’}m]x
. 1]
c yehie N\ o 24z c 2 ychd x :
§ 16 (et migs) s o 2 s | () st 4

0

2yl ¢ - ( yclde !
TETa—n ZJ’S Kol ra=y ;) chox d-"}’ !
0

/ (3.12)
where
“i
2=3(E[mc*)? (h/mcR). (3.13)
: ]
The spectral emission distribution (3.12) of the luminous electron (Fig- /27

ure 2) depends in quantum theory on a single parameter z, while in classical
theory the form of the spectrum (as a function of w/w__) does not depend

on the energy of the electron. The correctness of the passage to classical
distribution to the limit for z - 0 is easy to check by using the equation

V3y S Koy (¥)dx = |
y '

==y S dx {K s <} chix >ch"x shex - K3, (—22 ch? x)jch“x l,

0 -

(3.14)

which is readily proved [3] by using Lerkh's Theorum.
For z - 0, formula (3.11) for Oy turns into a classical expression, and

for E > » the energy of the photon in the peak of the spectrum trends toward
the energy of the electron.

13
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4. Complete Intensity of Emission

Assuming y<ﬂﬁxﬂ2—%(l——y)z]==£ ﬂ1x==t§0f will reduce (3.12) to the

form
9 e fE g, E 20 d0
_ Jeet f L\ 2 cos* ’
/= wE R (nzc’) S t'dt S (1 4 1z cos® 0)* x

0
1

<i1+Q +t:cos“0)2]K.2/. (1) +-[2sin® 0 (14-£2 cos?0) +£22% cos® (] K )./ (4.1)

The dependence of this integral on functions of z is illustrated in
‘Figure 3. Using Formulas

/2 s+1) P+
g r Ir——
S $in® 0 cos? 0 g = - ( 2 ( 2 )
b p(s§P+1) ’ (4.2)
1 ,:41—- l'Soodsl‘(—-s) )
1 T i N =T
G = v (4.3)

0

S K (x) Ky (x) xu—1dx ==

= (5 () (5 (e Rek), .

we will find (4.1) in the form of the integral

[ = g%’; (;%)‘ -21_7 i”" dszsI'(—s) [ (— s - —é—) r (s + %) X
+§)} (4.5)

—lm

X {5 T (s + 1)r(s + -;‘-)r(s +§> + 2T (s +2) T (s +-‘2"-)r(s

14
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Considering the reduction in the bands lying to the left of the contour, it
is easy to find the expression for emission intensity in the form

- B (Y (A (T — 3 b )

5 13,1 2 1 1 -z 3. 1 1 4,1
TSR TR R s PRI S et 2 B
1 2 4 1 55 1 17, 4 5 5,1 »
358 53 30 5 5 )] F ST E T 305§ B

10, 297 1 (1 17,8 11, 1
—z2 /'7251 <T>1Fz<T, TG zi)}'

_ (4.6)
For z >> 1 we obtain the expansion
2 ce? [ E \4/16 2 —, _a, 9D 1 _.’_297 T3t ...
1=?‘RT(W){§P(E>Z -9z P0(5) e = VB o h
Shifting the contour in (4.5) to the right, we find
_2ct f ENf 3 02 7 1 55V3 . 717
1= 5% Ga) a5 5 5 2) - B AR (e 5 2+
L2 2 5 o5 1. 1 ABVT 4 5 13 17 3
T 3 Z4F]<2, PREFEECEECR 42) 14 4Fl(3) 2 6°'6? ?; Z’)} (4.8)

The first terms of the asymptotic expansion of this total for z << 1 have
the form

2 [ E 55V3 16 o, 8855, 7 4 }
[:‘-—5-7{—;( ){1—T2+3z 86:,’1/;32 4.0,

mc?

(4.9)

In particular, by limiting ourselves in (4.9) to the first two terms, we
obtain the result

,,g(/_)t{ CBVE R [
3 R"r me* 1 Tm((',ﬁp‘) , (4.10)



found also in [4]. In practical units we have
1 =1~ 8,8- 107 E2p eyl Ru. (4.11)

If the energies of the electrons vary in time according to the law

'E=E.,sm(nt/2T)'(0 <t< T}, we will have, instead of (4.10),

T 1 ot Lo \tf, 203V3 h [ E\2)
A= Z—T(;"(mc") {l BT mcl((_rrz"') } . (4.12) /29

The dependence of I on z is illustrated in Figure 3 by the broken line.

The first coefficient in (4.9) corresponds to those obtained earlier in
[4] by a different method [2], having a significantly narrower range of
applicability (z << 1).

From the formulas obtained it is clear that classical theory is valid
for computing the emission intensity for the condition

F | mc® <7 (meR | 3k, ’ (4.13)

also obtained in the above cited works on quantum theory of the luminous

electron (see also [8.12]. Experimental studies [13-15] also pertain to

greater limitations of the applicability of classical theory in computing
emission intensity than condition (4.13).

Our theory,based on the assumption that E/me? >> 1, would be valid if
the peak of the emission spectrum falls to the last higher harmonics (the
validity of the assumption I' >> 1 is violated). Assuming that the peak of
(3.11) reaches the harmonic n» = 7 - 1, we will find the condition of applica-
bility of the proposed theory:

Y me*-meR [ 3h. (4.14)
This energy is much greater than that of (4.13) for macroscopic values
of the radius of the orbit.

5. Single-Photon Annihilation of Electrons and Positrons in a Magnetic Field

Let us examine [3] the transition of an electron from the state of positive
energy in a magnetic field to the state of negative energy in the same field
with the emission of a photon, making use of (3.1), (3.2) and assumlng e'== —1.

We will select a coordinate system such that we will obtain k1 = k' .
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and k3 = k'3. Then, averaging the probability of transition with respect to

the electron and positron spins, and adding the values of the momentum
of the photon, we will find the probability of annihilation per unit time

I/ T ST R TP PR PR L
‘xlz .v,.\’h:il(l skl (5.1)

whereupon k; = K3 =0 and « = K + K' because of the laws of conservation. This
probability is not equal to zero, since part of the pair's momentum will incor-
porate the magnetic ficld. Since x; = 0, the photon is emitted in a direction

perpendicular to the line connecting the centers of rotation of the particles.

The multiplication of the probability of (5.1) by the number of electrons
N with which a positron can be annihiliated is equal to the recriprocal of
the lifetime of a positron in a given electron beam, where n = N/LxLz is the

density of the stream of electrons in the beam. We will recall that in the
case of two-photon annihilation occuring in the absence of an external field,
the recriprocal of the lifetime of a positron is proportional to the volumetric
density of the electrons.

" The effectiive cross-section of transformation cannot be defined here,
since the incident waves cannot be regarded as planar at any distance. It is
this very circumstance which explains the inability to regard a magnetic
field in a given transformation as a perturbation of free travel, as may be
done with the electrical field of the atomic nucleus. Our calculation is /30
therefore analogous not to single-photon annihilation of positrons in atoms
in the Bohr approximation, but to calculations dealing directly with the
electrical field (a detailed 1list of references on the problems of the
annihilation of electrons and positrons, as well as on the creation of pairs
of these particles and the application of these phenomena to many problems in
physics,is furnished in [3]). A determination of the effective cross-section
is also impossible in the reverse transformation (creation of photon pairs in
a magnetic field) since a uniform magnetic field is not a spatially restricted
phenomenon ,

Let us assume that E >> me? and E' >> me?. Then, using (1.18), (1.20),
(1.29), (1.30), and (1.31), together with (2.18) and (2.19), we obtain for
the lifetime of a positron in a magnetic field

’

U er (N_IC_*L_[ (_pi)z] :
:’;l—wnﬁt‘b"’b’“(lf-}—li') I+ me X

e v (287 el G (1]

me

e 29[+ (P G 1 ()]

17



In particular, for £ = E’ and p, =

(1 RE)| 6.9
Fx) I%xs (25, (%) + K3, (1)) [ (5.4)

The function f(x) is shown graphically in Figure 4.

= 243 oy
1) | For > flx)xpgxe™,  anq
06} , L 8irag)2h
05t | x«l, f(X)'v——Tm-—xl'.
2;: The probability of annihilation reaches
o2t its maximum for
a1t
0 .’lA,..l.L‘.I... | e 3__’:’_?_
2 J 4 Sz Emax—_—_O,BBmC R (5.5)

Fig. 4. Determination of the
Probability of Single-Photon
Annihilation of Electron and In practical units
Positron in a Magnetic Field

1 -2
= 3 52 10 oncu‘iH]()‘Oef 15 9 (5 6)

T
Hsec 10'0c 10'

and

%a—x'.xo’ev=H7'8 . / (5.7)

10*Oe |

Here the energy of the particles is measured in billions of electron-volts,

the magnetic field is measured in billions of Oersteds, density in cm™2, /31
and time in seconds. The sharp decrease in probability with a decrease in

energy and magnetic field justifies the use of our approximations, which

are valid for high energies of the particles.

We will recall now that in the limiting case 7 fhzi have q = «2/2y << 1
and for 7 = ' > 1 andpz << me , [1(1 ll——ll(l 1, =

I, I=1)|=]I{'—1, )|<1, hence,

r _ mrul/ll., :
s, oV - (5.8)

To compare the probability of single-photon annihilation of electrons
and positrons in a magnetic field with the probability of their two-photon
annihilation, it is first necessary to find the ratio between densities » and p.
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In a rather narrow beam of particles p=n/2rR, where R=(v/c)(E/eH) and

e 1 e H

If H << Hyp, keeping in mind that for two-photon annihilation
i 21@ s v
T Ty s for T~1 f
we obtain for E = E (H)
max
THmin_ io)a] 030H,
o ") | (5.10)

Hence, the relative probability of single-photon annihilation here is low,
but it increases as H increases. For H >> Hy and v << c,.l/:o==pncr§f and

from (5.8) and (5.9)

o e’
T Tic H, * |

. (5.11)

In this case the relative probability of To/TH decreases with the field.

When # >> Hg it is possible to make only a qualitative comparison, since the
independence of 7y on X and the applicability of (5.9) in the last case are
totally not apparent. These results do indicate, however, that when H ~ H
the ratio tp/t( may be of the order of 1/137, i.e. single-photon annihilation

will predominate (or will be at least of the same order of probability as two-

photon annihilation). The possibility of the process of single-photon
annihilation of electrons and positrons in a magnetic field has not yet been
treated in literature.

6. Creation of Electron-Positron Pairs By Photons in a Magnetic Field

We will find [3] the probability of the phenomenon which is the antithesis
of the above, i.e. the transformation of a photon to an electron-positron pair
in a magnetic field--the unique nonlinear effect of the interaction of
electromagnetic fields. By taking the complex conjugate matrix elements from
the matrix elements of the preceding calculation and selecting a coordinate
system such that «; = «3 = 0, we will find k; = k'; and k3 = k'3, and for the
probability of transition per unit time, averaged with respect to the polar-
izations of the photon, we obtain

k

" x [ge) »] m

>___-_¢,"' A\ \ T e Tigy A ,

We o § diy § kXY N (b w P (KHK—).  (6.1)
Yoy min .~ 1==0 U'==0 5, §' = 1
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Keeping in mind that\yn\:"k“/YSQLy/Qland that the moduli of the matrix
elements and the energy are independent of kj, we find

1 et metme* H ¢ o — |
V=g, | dks Z SN U5k 1R KK, (6.2)

L= U0 §,8"'= {1

The value 1/W is the lifetime of the photon in a magnetic field, and
e¢/W is its path. If we consider a beam of photons with energy density #n(E)
and with cross-section S5, at distance d for time ¢ there will be

N==St\nE)de(1 — exp[—L Wik, H)}) | (6.3)
(@/c) W1, |
transformations of photons into pairs. 1: the effect is pro-

portional to the volume of the field.

It is easy to see that

a(K+1(—x)=—_/iL (kﬁ z/ﬁ-_(z )y /e{f+"""‘2;). 6.4)

2]

From (6.4) it is clear that W is transformed to infinity each time k3 = 0,
i.e. whenxm::1/k§4~2by4—1/k§+.2[7,1 where 7 and 7' are integers.

If L =1', for E > me? (F is the energy of the photon) we have

Ax = iy - = VEH]L | (6.5)
or
A=y met
_‘,,TF“‘ i, L (6.6)
In practical units
Hoe ‘
AEGy=2,22-10"% | (6.7)

Fnev® f

We see that the singularities of probability for H << Hy and E >> me? are

very frequently distributed on the scale of photon energy. These singularities
will inevitably be smoothed for the attainable range of the line with the
distribution of n(E). By using the law of conservation of energy we find
that if we exclude 7' instead of k3, considering that this value changes
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constantly, we immediately find the probability with smooth singularities.
Using (1.18), (1.20), (1.29), (1.30), (1.31), (2.18), and (2.19), expression
(6.2) can be reduced to the form

gy ctmed (4 T mc®
W= e (s ) (6.8)
where
v (¢) = ~_ et R d.\‘de {2ch*ychfx f}. (sch®y chix) --
0 0
(6.9)

— sh®xch? xl\’f/‘ (sch®*ych®x) 4 (2ch?y— 1) ch® x Kf[. (s chy chd x)}.

The approximation of high energies of particles and the photon is also used
in this case, since when conditions 7 > 1, and 7' >> 1 are not satisfied,

the probability is very low. The function ¢(e) is illustrated graphically

in Figure 5, where

o = M— e RN 1
2 (¢) T2 for =-%1,
3V3

o {z) = e~ re>1.
7 () 16V72 fo

The maximum of the probability of

21?4 - ) transformation is reached for
o (6.10)
205

' In practical units

0 4732 07 0905 9547 08 03 e

Fig. 5. Determining the Prob- L o0 0
ability of Creation of a Pair

by a Photon in a Magnetic Field.

W 1,22:10' e 00p (- 2L ) 61

and

I:‘ ma*(]'_evl‘ 274 / Hlol Oce (6 . 12)

The theory under discussion can indicate the cause of the great absorption
of photons, even in weak fields, only if the field has sufficient magnitide,
despite the fact that the high probability of transformation of a photon into
a pair occurs only in very strong fields. In cosmic magnetic fields having
a magnitude of the order of 102 cm and a strength of the order of 10-5--10-5
Oe., photons with energies higher than 4.102% Oe should be completely smooth,
whereupon the path of the photon with an energy of the order of 1025 ev has
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much smaller dimensions than the magnetic cloud. This effect will not have any
influence on photons of the specified energy, or on the visible light of
stars.

In fields having a strength of the order of 10° Oe the minimal path of the
photon (E ~ 101* ev) is at most a few centimeters.

Only qualitative indications [8, 9]? have, up to now, appeared on liter-
ature concerning the possibility of the trarsformation of a photon into a
pair in a magnetic field.

7. Creation of Electron-Photon Pairs by Electrons In a Magnetic Field /34

To find the qualitative evaluation of the energy of electrons for which we
should expect the intensive emission of pairs in a magnetic field by the
electrons, we will find the energy of the electrons for which the peak of the
emission spectrum of the luminous electron coincides with the maximum probability
of the creation of a pair by a photon in a magnetic field. In accordance
with (6.10) the energy of the photon here is

z = llrrlcﬁ—;% ! (7.1)
or,
8==lln@2"iﬁf%f, (7.2)
if we express the magnetic field through- the energy of the electron.
From (3.11) we find

< After the completion of this article we became aware of [16], in which the
creation of pairs by photons in a magnetic field is discussed. The result of
[16] is suggested for use only when the effect is very slight and contains
the correct exponential factor. The other factors in [16] were found to be
incorrect, since an incorrect expression was used for the density of final
states and the approximation for the matrix elements was too rough (the
diminution of probability with increasing values of |7 - 7'| in our design-
ations was incorrectly approximated.
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By equating (7.2) and (7.3) we find

CRCIRE -0

e \

From (7.4) we see that the influence of the effect under consideration on
energy losses of the particles in a magnetic field appears soon after the
emission of photons begins to deviate from classical theory.

The author expresses his heartfelt graditude to professor A. A. Sokolov,
who supervised the work on this theme.
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